Gypsy Moth

Gypsy MothGypsy Moth — The gypsy moth, Lymantria dispar, is a moth in the family Lymantriidae of Eurasian origin. Originally ranging from Europe to Asia, it was introduced to North America in the late 1860s and has been expanding its range ever since.

Gypsy moth egg masses are typically laid on branches and trunks of trees, but egg masses may be found in any sheltered location. During outbreaks they have been known to fly to ships in port and lay their eggs on the ships. Four to six weeks later, embryos develop into larvae.

The egg is the overwintering stage. After an acclimation stage, eggs can withstand freezing temperatures. The longer they are chilled in winter, the less heating is required for their hatch in spring.

Egg masses are buff colored when first laid but may bleach out over the winter months when exposed to direct sunlight and weathering. As the female lays them, she covers them with hair-like setae from her abdomen. Many individuals find these hairs irritating, and they may offer the eggs some protection. Egg masses contain from a couple of hundred to about 1200 eggs.

Factors that affect gypsy moth populations

Natural enemies play an important role during periods when gypsy moth populations are sparse. Natural enemies include parasitic and predatory insects such as wasps, flies, ground beetles, and ants; many species of spider; several species of birds such as chickadees, blue jays, nuthatches, towhees, and robins; and approximately 15 species of common woodland mammals, such as the white-footed mouse, shrews, chipmunks, squirrels, and raccoons. Predation by small mammals (mice and shrews) is the largest source of mortality in low density gypsy moth populations and this mortality is apparently critical in preventing outbreaks. Calosoma (ground beetles of European origin), cuckoos, and flocking birds, such as starling, grackles, and red-winged blackbirds, are attracted to infested areas in years when gypsy moth populations are dense. Diseases caused by bacteria, fungi, or viruses contribute to the decline of gypsy moth populations, especially during periods when gypsy moth populations are dense and are stressed by lack of preferred foliage. Wilt disease caused by a particular nucleopolyhedrosis virus (NPV) that is specific to the gypsy moth is the most devastating of the natural diseases. NPV causes a dramatic collapse of outbreak populations by killing both the larvae and pupae. Larvae infected with wilt disease are shiny and hang limply in an inverted “V” position. Infection with NPV is the most common source of mortality in high density populations and NPV epizootics usually cause the collapse of populations. Since the 1980s, the fungus Entomophaga maimaiga has also had a large impact on gypsy moth populations in North America. Weather affects the survival and development of gypsy moth life stages regardless of population density. For example, temperatures of -20°F, (-29°C.) lasting from 48 to 72 hours can kill exposed eggs; alternate periods of freezing and thawing in late winter and early spring may prevent the over wintering eggs from hatching; and cold, rainy weather inhibits dispersal and feeding of the newly hatched larvae and slows their growth.

Check Also

Enola Holmes: 2020 Bollywood Mystery Film

Enola Holmes: 2020 Bollywood Mystery Film

Movie Name: Enola Holmes Directed by: Harry Bradbeer Starring: Millie Bobby Brown, Sam Claflin, Henry Cavill, Helena …

Leave a Reply

Your email address will not be published. Required fields are marked *